Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
Funktionsuntersuchung - exp und ln, Matheübungen
Funktionen und Funktionsscharen, die exp oder ln enthalten, hinsichtlich D
max
, Nullstellen, Verhalten im Unendlichen, Symmetrie des Graphen zum KOSY, relativen Hoch- und Tiefpunkten und weiterer Aspekte untersuchen. - 17 Aufgaben in 6 Levels
Abbruch - Keine Zugriffsberechtigung
Hilfe
Für diesen Aufgabentyp steht keine spezielle Hilfe zur Verfügung.
Weitere Hilfethemen
FAQ zum Aufgabenbereich und zur Bedienung
Aufgabe
Aufgabe
1 von 2
in Level 6
Löse die Aufgabe Schritt für Schritt.
Gegeben ist die Schar von Funktionen
f
k
mit
f
k
x
=
k
·
ln
x
2
+
k
und
k
∈
ℝ
+
mit jeweils maximalem Definitionsbereich
D
=
ℝ
. Der Graph von
f
k
wird mit
G
k
bezeichnet.
a) Weise nach, dass die Graphen aller Scharfunktionen die gleiche Symmetrieeigenschaft besitzen.
b) Ermittle das Verhalten von f an den Rändern von
D
f
.
c) Bestimme in Abhängigkeit von k Anzahl und Lage der Nullstellen von
f
k
.
d) Zeige, dass alle Funktionen der Schar das gleiche Monotonieverhalten besitzen.
e) Ermittle den Wert von k, für den das Minimum von
f
k
den kleinstmöglichen Wert annimmt. Gib den zugehörigen Tiefpunkt von
f
k
an.
f) Berechne für die beiden Graphen
G
k
mit
k
=
1
e
bzw.
k
=
1
jeweils die Nullstellen und die Funktionswerte an den Stellen
x
=
2
und
x
=
4
. Zeichne die beiden Graphen auf der Grundlage aller bisherigen Ergebnisse im Intervall
−
4
≤
x
≤
4
.
Schritt 1 von 10
Zu a)
Welche der folgenden Terme stimmen überein?
−
k
·
ln
−
x
2
+
k
k
·
ln
−
x
2
+
k
k
·
ln
x
2
+
k
k
·
ln
x
2
−
k
Welche Eigenschaft haben somit alle Graphen
G
k
?
Achsensymmetrie bezüglich der x-Achse
Achsensymmetrie bezüglich der y-Achse
Punktsymmetrie bezüglich des Ursprungs
Ergebnis prüfen
keine Berechtigung
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
α
β
γ
δ
ε
η
λ
μ
π
σ
φ
ω
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Lösung anzeigen
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt der Zwischenschritt als nicht gelöst und die Bewertung deiner Leistung für diese Aufgabe verschlechtert sich.
Lösung anzeigen
Abbrechen
Stoff zum Thema (+Video)
Stoff zum Thema anzeigen
Beispiel 1
Gegeben ist die für x∈ℝ definierte Funktion f mit
f
x
=
2
−
3x
·
e
−
x
.
a) Wie verhält sich die Funktion im Unendlichen?
b) Gib alle Nullstellen an.
c) Bestimme alle relativen Hoch- und Tiefpunkte.
d) Berechne f(-0,5), f(0) und f(4) und zeichne
G
f
auf der Grundlage aller bisherigen Ergebnisse im Intervall
−
0,5
≤
x
≤
4
.
e) Die Tangente an
G
f
an der Stelle
x
=
0
bildet mit den Koordinatenachsen ein Dreieck. Bestimme dessen Fläche.
Beispiel 2
Gegeben ist die Funktion f mit
f
x
=
e
·
ln
x
x
2
und maximalem Definitionsbereich
D
f
. Der Graph von f wird mit
G
f
bezeichnet.
a) Gib
D
f
an.
b) Ermittle das Verhalten von f an den Rändern der Definitionsmenge.
c) Berechne alle Nullstellen von f.
d) Bestimme Lage und Art aller Extrempunkte von
G
f
.
e) Berechne f(8) und zeichne
G
f
auf der Grundlage aller bisherigen Ergebnisse im Intervall
0
<
x
≤
8
.
f) Gib die Wertemenge von f an.
Beispiel 3
Gegeben ist die Schar von Funktionen
f
k
mit
f
k
x
=
x
·
e
1
−
x
k
, Definitionsmenge
D
f
=
ℝ
und
k
∈
ℝ
+
. Der Graph von
f
k
wird mit
G
k
bezeichnet.
a) Gib die Nullstellen und das Verhalten von
f
k
für x→±∞ an.
b) Bestimme Lage und Art des Extrempunkts von
G
k
in Abhängigkeit von k.
c) Begründe, dass die Extrempunkte aller Graphen der Schar auf einer Halbgerade liegen, und beschreibe die Lage dieser Halbgerade im Koordinatensystem.
d) Weise nach, dass alle Graphen der Funktionenschar im Ursprung die gleiche Tangente besitzen, und gib eine Gleichung dieser Tangente an.
e) Bestimme den Wert für
k
so, dass
G
k
durch den Punkt
6
|
6
e
2
verläuft, und zeichne den Graphen der zugehörigen Scharfunktion unter Berücksichtigung der bisherigen Ergebnisse.
Beispiel
f
x
=
x
·
e
−
x
x
+
1
Bestimme
die maximale Definitionsmenge
D
max
die Nullstelle(n)
das Verhalten von f an den Rändern von
D
max
das Monotonieverhalten von f und die relativen Extrempunkte
Skizziere schließlich den Graphen von f unter Einbezug aller Teilergebnisse.
Beispiel
f
t
x
=
e
x
3
−
x
+
t
Bestimme den Parameterwert t so, dass die Tangente an
G
t
im Punkt (1 | ?) die Steigung
1
4
hat.
Mathe-Aufgaben passend zu deinem Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen
Titel
×
...
Schließen
Speichern
Abbrechen