Hilfe
  • Hilfe zum Thema
    Ein negativer Exponent bedeutet, dass man den Kehrwert der Potenz mit positivem Exponenten bildet: \[ a^{-n} = \frac{1}{a^{n}} \qquad (a \ne 0) \] Der Exponent wird dabei positiv: \[ a^{-1} = \frac{1}{a}, \quad a^{-2} = \frac{1}{a^2}, \quad a^{-3} = \frac{1}{a^3}, \dots \]

    Einfaches Zahlenbeispiel:

    \[ 4^{-2} = \frac{1}{4^2} = \frac{1}{16} \]
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 5 in Level 1
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die Hilfe zu dieser Aufgabe an.
Stoff zum Thema
Was bedeutet eine Potenz mit negativer Hochzahl, z.B. \(2^{-3}\)?
#1406
Ein negativer Exponent bedeutet, dass man den Kehrwert der Potenz mit positivem Exponenten bildet: \[ a^{-n} = \frac{1}{a^{n}} \qquad (a \ne 0) \] Der Exponent wird dabei positiv: \[ a^{-1} = \frac{1}{a}, \quad a^{-2} = \frac{1}{a^2}, \quad a^{-3} = \frac{1}{a^3}, \dots \]

Einfaches Zahlenbeispiel:

\[ 4^{-2} = \frac{1}{4^2} = \frac{1}{16} \]
Beispiel

Bestimme das Ergebnis.

\(\displaystyle \left(\frac35\right)^{-3}\)

Was versteht man unter der wissenschaftlichen Notation einer Zahl?
#482
In der Praxis werden sehr große oder sehr kleine Werte oft in der Form a · 10n geschrieben, wobei 1 ≤ a < 10. Man spricht hier auch von wissenschaftlicher Notation.

Bei dieser Notation erkennt man anhand des Exponenten der Zehnerpotenz sofort die Größenordnung. Z.B. hat man bei 103 eine Zahl in der Größenordnung "Tausend". Bei 10-3 dagegen hat man eine Zahl in der Größenordnung eines Tausendstels.

Beispiel 1
Schreibe in wissenschaftlicher Notation:
a) 5 723 000
b) 0,00095
Beispiel 2
Schreibe "15 Millionstel" in wissenschaftlicher Notation.